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Abstract

Given the significant threat posed by email as a highly
prevalent phishing attack vector, we undertake the first study
focused on real-world phishing email reporting systems. Our
key idea in performing this study is to repurpose email track-
ing, a well-known privacy threat vector, for profiling and
evading anti-phishing systems employed by popular email ser-
vices. Our results show that the reporting systems of all major
email services we tested are vulnerable to evasive phishing
attacks affecting more than 2 billion users worldwide. We pro-
pose several countermeasures that email service operators can
adopt to help ameliorate this issue in the future. We disclosed
our findings to the affected email providers which resulted in
remedial changes and a vulnerability reward.

1 Introduction

Phishing remains a persistent challenge in cybersecurity. Ef-
forts to address phishing have largely focused on specific
sub-problems, such as developing advanced machine learning-
based phishing detectors [24, 34, 36, 37, 38, 39] and analyz-
ing phishing attacks in the wild [27, 33, 45, 51, 56]. However,
real-world phishing reporting systems have received relatively
little attention. Specifically, there has been limited research
on how the deployed phishing detectors used by large service
providers respond to user-reported phishing websites. This is
a critical gap since any discernible patterns in the behavior of
these anti-phishing systems in response to user reports can
be discovered and exploited by attackers. For instance, if a
phishing detector’s behavior is identifiable, attackers could
leverage cloaking techniques to display harmless content to it
while maintaining malicious behavior for regular users [57].

The limited prior research in the domain of phishing re-
porting has already demonstrated the ability to create evasive
phishing websites that bypass security crawlers designed to
operate incognito [25, 26, 28, 43, 44]. However, a signifi-
cant limitation of this prior work is its exclusive focus on
web-based phishing reporting systems, which are often un-
known to the average Internet user. For instance, Google’s
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Safe Browsing (GSB) service offers a dedicated web portal’
for users to report potential phishing websites. However, it is
unlikely that most regular users are even aware of this portal,
let alone use it. Despite this, all prior studies on web-based
phishing reporting systems [25, 26, 43, 44] rely on this portal
to evaluate GSB’s resilience against evasive phishing attacks.
In this paper, we aim to address this gap by concentrating
our research solely on email-based phishing reporting sys-
tems. To the best of our knowledge, email-based phishing
detectors and phishing-reporting systems have never been
systematically studied before. Email remains the most domi-
nant vector for cyberattacks, accounting for over 91% of all
attacks [8], with more than a trillion phishing emails sent
worldwide each year [8]. Given such a large prevalence of
phishing emails, it is crucial to study the phishing report-
ing systems that are integrated into popular email services
and gauge their resilience to potential evasion attacks. These
built-in systems are likely far more familiar and accessible
to regular users compared to the isolated, web-based systems
examined in prior research. For example, Gmail provides an
intuitive phishing reporting mechanism, as shown in Fig. 1.

Objective. With this paper, we aim to answer two main
questions: (Q1) How do email services handle the phishing
reports that they receive from users? (Q2) Can attackers abuse
email-based phishing reports to fingerprint phishing detectors
and cloak their malicious infrastructure from them, achieving
long-lasting phishing campaigns?

Key idea: weaponizing email tracking. Our key idea is
based on a threat vector that is traditionally associated with
web privacy, that of email tracking [29]. Email tracking en-
ables senders to monitor if and when an email has been
opened, and in some cases, where it was accessed from. This
is achieved by leveraging the fact that most email clients
support HTML-based emails with embedded remote objects,
such as images. The loading of these images serves as a side
channel to deduce the act of email opening.

Ihttps://safebrowsing.google.com/safebrowsing/report_ge
neral/
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Ever since Google made the loading of images in emails
the default option in 2013 [47], pixel tracking has become a
more widely feasible way for marketers to track the success
of their campaigns via email open rates [1]. In this paper,
we explore the idea of using similar techniques but from a
security perspective to launch evasive attacks against the anti-
phishing systems hosted by email services. In particular, we
evaluate the use of email-tracking techniques to not only target
the end users but all subsystems employed by email services,
both before and after an email is flagged for phishing. Thus,
we show that a vector that was associated with web privacy
is “doubly dangerous” since attackers can weaponize these
vectors for better phishing attacks.

Our experimental results reveal an alarming finding: the
phishing reporting systems of all major email services we
tested—serving over 2 billion users—can be profiled and
evaded, including two of the most widely used email plat-
forms, Google Mail and Microsoft Outlook. This conclusion
stems from a systematic measurement experiment we per-
formed in which we sent thousands of emails with custom
tracking vectors over a period of 44 days. Our experiment
showed that all studied email services employed separate
subsystems for activities such as prefetching, proxying, and
phishing inspection. All these subsystems, unfortunately, dis-
played differential behavior that makes them vulnerable to
“email open” tracking. This differential behavior manifested
in a variety of ways, such as identifiable HTTP headers, lim-
ited network address diversity, and differential loading when
initiating requests of objects embedded in our tracking emails.
Importantly, the fact that the phishing inspection subsystems
can be tracked directly points to the affected services being
vulnerable to evasive phishing attacks. We confirm this with
the help of end-to-end simulation phishing experiments that
we designed and implemented.

We summarize our key contributions below.

1. We systematically improve the array of candidate vec-
tors that can be used for tracking emails beyond the
commonly used pixel-tracking techniques. Using these
improved tracking vectors, we confirm that most popu-
lar email services (7 out of 8) are prone to “email open
tracking” in their default settings (§ 3).

2. Weaponizing these vectors, we perform a systematic
measurement study on 4 popular email services that offer
a phishing reporting system. Our study confirms the
existence of various subsystems, all of which (including
phishing reporting systems) can be uniquely identified by
attackers via multiple network signals during the loading
of email objects (§ 4).

3. We confirm the validity and stability of our findings
by designing and conducting a small-scale, end-to-end
simulated phishing attack experiment. The results show
the longevity of phishing sites powered by our evasive
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Figure 1: A Gmail user needs to make two clicks as shown
to report an opened email as “phishing.”

attack approach in comparison to baseline attack sites,
which all get immediately blocked (§ 5).

We also discuss multiple countermeasures available for
email services (§ 6). While some measures present usability
issues and need a nuanced look at the security and usability
tradeoffs, others are more straightforward with no foresee-
able usability side effects. Thus, we expect this latter variety
of recommendations to be quickly adopted by major email
service providers as a result of our disclosure process.

2 Attack overview

In this section, we first establish the threat model for the
evasive phishing attacks we examined in this study. We then
follow it up with a high-level sketch of the attack mechanism
that we propose and evaluate.

2.1 Threat model
2.1.1 The phishing attacker

In this paper, we examine the scenario of a phishing attacker
aiming to lure potential victims into visiting their phishing
website. As previously discussed, this attacker chooses to use
email as a delivery vehicle for their attacks owing to its popu-
larity [8]. This means they will craft a link to their phishing
website and share it with the victims through a persuasively
written email. Considering that phishing is an attack with
very low success rates, the attacker will need to send a large
number of phishing emails in total.

As phishing sites that get reported to anti-phishing enti-
ties typically have lifespans of only a few hours [25, 43], the
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Figure 2: An example evasive phishing attack scenario where the victim recognizes the attack and reports it

attacker seeks to increase the longevity of their phishing web-
sites. To do this, the attacker sets up their phishing website in
such a way that each receiver has a unique URL link to their
site. We also assume that the attacker has the ability to turn
each of these links into a phishing or benign mode. Thus, the
same website might simultaneously carry some links that are
benign while several others that are malicious.

2.1.2 Phishing victims

In this study, we assume that the victims being fargeted by the
attacker have retained the default configuration in their email
clients regarding remote image loading. As we will discuss
in § 3, modern email clients typically allow images to load
by default, and we consider this setting to be applicable to
the targeted victims. This assumption is supported by prior
research, which indicates that the majority of users (>70%) do
not alter default privacy settings [4] and often prefer images
to load automatically [3].

However, this does not imply that the attacker avoids send-
ing phishing emails to untargeted users who disable remote
image loading. Instead, the attacker still sends them emails but
ensures that the attack remains inactive for such users. To do
this, the attacker configures the URL shared with untargeted
users to operate in the aforementioned “benign” mode.

It is also worth noting that users who actively modify their
default image-loading settings are generally more security-
conscious and, therefore, less likely to fall victim to phishing
attacks. By keeping shared URLs in benign mode for such
users, the attacker reduces the likelihood of their phishing
sites being flagged and blocked due to reports from untar-
geted recipients. Finally, in § 7, we will discuss how our
experimental results support the inclusion of even these more
security-savvy users in our threat model.

Ultimately, all users (whether targeted or not) are assumed
to receive their emails and open them at any time. While some
users open the links and fall for the phishing attack, other
users will report the email as “phishing” to email services.
The main objective of the attacker is to attempt to keep their
phishing site active for as long as possible despite multiple
phishing reports from users (whether targeted or not).

2.2 Evasive attack mechanism

With the threat model established, we now outline a high-level
overview of our proposed evasive phishing attack mechanism
using an example scenario illustrated in Fig. 2. The figure
depicts an attacker dynamically managing an evasive phishing
webpage (i.e., a URL). The attacker initially sets the webpage
to a benign mode and sends a phishing email embedded with
tracking vectors to a targeted user @. Upon receiving the
email, the email service prefetches objects (such as images)
embedded in it, which triggers an alert to the attacker @.
However, since these requests are identified as coming from
an email service’s data prefetching mechanism (based on the
tracking vector information), the attacker keeps the phishing
webpage in benign mode.

When the victim opens the email @), it generates a charac-
teristic tracking signal that alerts the attacker @. This time,
recognizing that the event is from a potential victim rather
than a prefetching service, the attacker switches the webpage
to phishing mode @. The victim then clicks the URL and
lands on the phishing page @. Upon realizing the nature of
the site, the victim reports the email as “phishing” @. This
prompts the email service’s phishing detection system to load
the email’s objects, generating yet another tracking signal to
the attacker @. In response, the attacker immediately reverts
the phishing webpage to benign mode @, effectively hiding it



from subsequent visits by phishing detection crawlers @D.

In this scenario, it is crucial to note that the tracking signals
revealing the victim’s actions, such as opening the email @
and reporting it @, play a pivotal role in enabling the attacker
to execute evasive changes to the phishing webpage. In the
following sections, we will explore how these tracking sig-
nals can be realized across major email services that support
phishing reporting.

Alternative scenarios. While the above scenario highlights
one specific attack sequence, the attacker’s ability to monitor
all key email events, such as service prefetching, user email
opening, and phishing reporting, makes this evasion approach
adaptable to various alternative scenarios. For instance, con-
sider an untargeted user who reports the email. Since such
users’ email clients do not generate “email open” signals, step
@ is bypassed, and the phishing webpage remains in benign
mode during all subsequent visits by security crawlers.

3 Tracking vectors in modern email services

From our previous section, it is clear that we need to investi-
gate the efficacy of email tracking vectors for attack purposes.
For this, we first study how feasible it is to track the open-
ing of emails in the default client settings. Specifically, we
expect to capture the signals that emanate during a potential
email prefetching phase (@ in Fig. 2) and a subsequent email
opening phase (€, @ in Fig. 2.) The key idea that enables this
tracking is the fact that modern email clients support many
HTML and CSS features that can be exploited to track the ren-
dering of emails. A sender can include an external resource in
an email, such as an image with a unique tracking URL. When
the recipient interacts with the email, the email client might
initiate an HTTP request to the attacker’s server to load that
resource. The tracking server receives this request and can
leverage the unique identifier in the resource to attribute it to
a specific recipient. We refer to the HTML and CSS features
as tracking vectors and the specific action of initiating the
associated HTTP requests as triggering the tracking vectors.

3.1 New e-mail tracking vectors

Previous works [29, 30, 31] have identified pixel tracking via
<img> as the primary method used to track email recipients.
Englehardt et al. [29] evaluated different email clients to as-
sess their defense against pixel tracking. Since modern email
clients support multimedia in HTML and CSS, we leveraged
this feature towards email tracking to look beyond simple
pixel tracking via <img> tags. To this end, we systematically
curated a list of all non-deprecated HTML tags that support
the loading of external resources by reading through the offi-
cial MDN documentation. This resulted in a list of 15 HTML
tags. Among them, ultimately only 11 HTML tags were useful

as tracking vectors” in at least one of the three attack stages
we discuss in the paper. For brevity, we only discuss these
useful vectors in detail in Table 13 in the Appendix. The ta-
ble lists the names of these tracking vectors, along with their
description, usage examples, and links to documentation.

One interesting example among these useful HTML tags
is the <input> tag whose type attribute can be set to the
value “image” to create a submit button that displays an
image instead of a standard button’. Similarly, we also found
<object>, <picture>, <svg>, <audio>, <video> tags to be
useful for attack purposes, as we will see later.

Next, to complement these pure HTML features we also
devised three tracking vectors using remote CSS property fea-
tures (also listed and discussed in Table 13). While CSS has
been recently studied for fingerprinting purposes in richer en-
vironments such as full-fledged web pages [54], our objective
here is to only measure its utility when used inside HTML
email content for email tracking and phishing attack evasion
purposes. For example, the CSS rule @font-face supports a
method to source fonts from a remote server, which we found
can be abused for email tracking.

3.2 Analyzed e-mail services

We selected a list of 15 email service providers as potential
candidates for our study based on popularity and accessibil-
ity [48, 49]. We then performed a feasibility check on each of
them. As one of our requirements for a later experiment (§ 4)
is to create about 10 email accounts, we disregarded any ser-
vices that did not permit us to do this. Five email services were
regional in nature and did not permit us to create accounts
from our jurisdiction (e.g., 163.com, mail.ru). After this pro-
cess, we were left with eight popular email services that we
consider in this study including highly popular services like
Gmail, Outlook, Yahoo, and Proton. Table | presents these
services along with their estimated user counts, collectively
covering billions of users.

3.3 Methodology

We built a simple automated system capable of composing and
sending emails consisting of these HTML tracking vectors.
Each tracking vector is assigned a unique tracking URL that
enables the system to distinguish the tracking vectors and
identify the recipients across multiple emails. We used this
system to measure the effectiveness of all the tracking vectors
we curated against the eight email services. Our goal was to
find the vectors that get triggered during the prefetching and
email opening phases of an email’s life cycle.

2The 11 HTML tags resulted in 14 tracking vectors with <img> and
<object> tags being leveraged in multiple forms as tracking vectors. More
details are in Table 13.

3Interestingly, this vector was triggered in AOL and Yahoo even when
image loading was disabled in the email client settings



Email Services

Total Users (million)

Gmail 1800.0
Outlook 400.0
Yahoo 230.0
Proton Mail 100.0
Mail.com 14.6
GMX 11.0
Tuta Mail 10.0
AOL 1.5

Table 1: Total number of estimated users for the eight email
providers we consider in our study [2, 6, 7, 32]

We created one account for each email service to conduct
this experiment. We then registered a . com domain to serve
the requests for the email tracking vectors. Before sending
the tracking emails, each email account was warmed up by
sending a couple of emails back and forth between the eight
accounts to create a trust relationship. We then sent three test
emails with all tracking vectors embedded and then opened
them manually. This process was conducted on both web
(Windows 11 desktop) and Android App platforms (Xiaomi
Poco F2 Pro). We made sure to retain all the accounts in their
default configuration settings in order to align with our threat
model as previously discussed (§ 2.1).

3.4 Results

Table 2 and Table 12 (in the Appendix) show the behavior of
email clients against different tracking vectors on the web and
Android platforms, respectively. The columns of these tables
show all tracking vectors that were successfully triggered on
at least one email service. Each tick in the cells indicates a trig-
ger event of a tracking vector either during email prefetching
(prior to email opening) or an email opening event. Double
ticks indicate both events. Cells are colored in red whenever a
tracking vector got activated during the email opening event.
Interestingly, the results show that, under their default settings,
all email providers except Tuta Mail leak at least one email
open signal to the tracking server, accounting for more than
2 billion users, indicating a grave privacy threat.

In addition to simple pixel tracking, both tables show that
various additional vectors such as image submit, picture, font,
audio, video, and CSS inclusion are all effective for tracking
email open activities amongst various email clients. It is useful
to note the difference in the behavior of email clients across
these tracking vectors. For example, in the case of Proton
Mail in Android (Table 12), regular pixel tracking with <img>
does not leak the email open signal. However, using image
tracking with <picture> or in paragraph background using
CSS gives an email open signal.

Our results also show that three of the eight services we
examined (Gmail, Proton, Outlook) tend to prefetch certain

types of objects. Interestingly, we also observed that some
vectors (such as the “SVG” vector in Proton) are triggered dur-
ing the prefetching phase but not during the subsequent email
opening phase. We surmise that this indicates a “caching’
feature implemented by these services for specific objects.

We also examined the IP address of the requests triggered
via tracking vectors during email opening to assess the poten-
tial leakage of the end user’s address. As shown in Tables 2
and 12, three services: Outlook, GMX, and Mail.com all re-
veal the client’s IP address on both platforms in their default
settings. We also found that Tuta Mail also leaks a user’s IP
address whenever they override settings to enable image load-
ing. In contrast, services such as Gmail, Yahoo, and Proton
route user requests via proxies for added privacy.
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4 Evaluation of email reporting systems

Building on our findings of how the server-side prefetch and
user-side email open activities are revealed to attackers, we
now investigate what happens when a user reports an opened
email as “phishing” to the service. For this, we perform an
end-to-end controlled experiment where we send neutral-text
emails embedded with various tracking vectors to our own
accounts. We then open and report a subset of these emails as
“phishing” with the goal of answering both the questions we
pose in § | as part of our quest to study the email phishing
reporting infrastructure of popular services.

4.1 Experimental setup

Our setup consisted of a Sending module responsible for com-
posing and sending emails with tracking vectors. The full list
of vectors used by this module is listed in Table 13. Addition-
ally, each email was also fitted with a unique URL linked to
a honey website that we controlled. All the emails were re-
ported using our Reporting module that uses GUI automation.

4.1.1 Email services

For this experiment, we selected the email providers based
on whether they provided a built-in dedicated email phish-
ing reporting button. Among the eight popular email services
we evaluated (Table 1), four—Gmail, Outlook, Proton Mail,
and Tuta Mail—provide users with a dedicated button for
reporting phishing emails. The remaining services—Yahoo,
AOL, GMX, and mail.com—Iack a dedicated button to report
an email as phishing. Rather, for these providers, the recom-
mended approach for reporting emails is to mark the phishing
email as spam4. Hence, for our experiment, we omit these
email providers. Still, we note that the four remaining email
services we cover in our experiment, namely, Gmail, Outlook,

4When the sender is from the same platform as the receiver, these
services provide an email address to forward the phishing email to them.
However, this is not applicable to us as we send emails cross-platform.



Vector bg image imgsrc imgsrc parabg picture font iframe object object SVG IP Leak
Service image submit large image html vid

Gmail X W W W w w X X X X X X
Outlook v v v v v v X v v v X v
Yahoo X v v v v v X X X X X X
Proton v X w W W W v X X X v X
Mail.com X X v v v v X X X X X v
GMX X X v v v v X X X X X 4
Tuta X X X X X X X X X X X X*
AOL X v v v v v X X X X X X

Table 2: Tracking vectors for prefetch and email open stages of various services on the web platform. Each v represents the
vector getting triggered during one of the stages. All cases in which the vector was triggered during email open stage are in
red indicating serious security implications. Cases in which vectors are activated only during prefetch stage are in yellow
(with a single v') while all others are in green. W denotes the vectors triggered at both stages. X" denotes the IP address of
the client leaking when overriding default settings to allow image loading.

Proton Mail, and Tuta Mail, altogether account for more than
2.3 billion users worldwide as listed in Table 1.

4.1.2 Email accounts

‘We manually created both the receiving and the sending ac-
counts. The experiment was designed to send emails to the re-
ceiving accounts in a cross-platform manner. We deliberately
chose this approach to minimize the information available to
the receiving email service regarding the sending accounts,
thereby reducing the likelihood of the sending accounts being
flagged as suspicious or malicious. By minimizing the associ-
ation between the sender and the receiver, we tried to create a
more realistic simulation and mitigate any potential bias.
We separated all the receiving accounts belonging to the
same service by creating a dedicated Google Chrome profile
for each account (10 total profiles). We took this approach
to isolate each account from others within the same service.
Additionally, we assigned a specific VPN server location to
each profile and accessed the accounts exclusively from these
chosen locations. This was done to ensure diversity in the
IP addresses among the email accounts and create a setup
mimicking a real-world email delivery and phishing reporting.

4.1.3 Sending module

The Sending module was responsible for composing each
email, embedding the tracking vectors, and delivering the
emails to the receiving accounts. For crafting emails, we
made a collection of 10 randomly selected books from Project
Gutenberg’. The content of each email was generated by ex-
tracting a few random sentences from the book collection.
Each email was assigned a randomized value (between 0 and
1) which is used by the Reporting module to select emails for

Shttps://www.gutenberg.org/

reporting to introduce randomness and non-determinism in
the email reporting process. Each tracking vector URL in the
email had a unique random string embedded in it, which made
it possible to track each vector across all emails. In addition
to the tracking vectors, each email contained a unique URL
link to a honey website.

4.1.4 Honey websites

We set up multiple honey sites with the aim of evaluating the
behavior of security crawlers of the email services that may
visit the URLs embedded in the email. For this, each honey
site recorded the IP address and the HTTP request headers
for each visit. Additionally, we also included fingerprinting
code in the website to profile the crawlers that visit the URLs
included in the emails. Specifically, we added canvas and JS-
based font fingerprinting code in the honey websites. Canvas
fingerprinting [41] computes a fingerprint as a cryptographic
hash of a hidden image drawn on the webpage. Font fin-
gerprinting [42] uses JavaScript to detect the list of fonts
installed in the client and generates a cryptographic hash of
the font list, serving as a fingerprint. Canvas and JS-based font
fingerprinting have been used effectively in fingerprinting and
evading security crawlers [25].

4.1.5 Reporting module

The Reporting module was used to report emails received by
each receiving account using OS-based GUI automation. For
this, the module utilized PyAutoGUI for input control and
Tesseract for optical character recognition (OCR) on a Win-
dows VM. This module was responsible for signing into each
account using a dedicated VPN location to ensure IP address
consistency. To avoid triggering CAPTCHAs, we deliberately
avoided using browser automation tools such as Selenium.
We believe that this use of OS-based GUI automation paired
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with the steps to main IP address consistency for account
access helped in successfully avoiding CAPTCHAs during
our experiments. The reporting module can randomly report
specific emails based on the random weight value assigned for
each email. This way, our experimental pipeline was capable
of reporting a chosen fraction of random emails as phishing
without any temporal biases.

4.2 Deployment

We conducted this experiment using 40 receiving email ac-
counts across four email services. We manually created 10
receiving accounts for each email service. Additionally, we
created 20 sending accounts, five each for Google, Yahoo,
Outlook, and AOL. Before the experiment, all receiving and
sending accounts were warmed up and also subscribed to
newsletters to make them appear as legitimate, active users to
email service providers. The sending accounts were warmed
up by exchanging at least four emails per account. The receiv-
ing accounts exchanged at least four emails per account. The
emails were exchanged exclusively between cross-platform
services. To separate accounts belonging to the same plat-
form, we created 10 Google Chrome profiles for the receiving
accounts and five profiles for the sending accounts.

We used the sending module to compose the emails with
neutral content to minimize spam. It is important to note
that for this experiment, we are concerned about studying the
email reporting infrastructure and not the spam filtration sys-
tem. To this effect, any emails that ended up in a recipient’s
junk folder were manually moved to the inbox without open-
ing the email. This also does not affect our attack scenario
discussed at § 2 and § 3 because the attack is not activated
until opened by the recipient. We also assume that the attacker
has the capability and resources to craft an email that ends
up in the recipient’s inbox rather than the spam folder. For
the honey sites, we registered 20 domains under the .com
TLD. Each URL consisted of a domain and a randomly gen-
erated string, such as https://domain/random-str, which
ensures that it is unlikely to be visited by unintended visitors.

We sent a total of 1,997 emails across 40 email accounts
in a cross-platform manner. We used the reporting module to
report, at random, approximately 70% of the emails received
by continuously increasing the threshold value for reporting.
We completed this experiment over a period of 44 days.

4.3 Results

Table 3 provides a comprehensive breakdown of the total num-
ber of emails received and phishing reports made for each
email service. Upon careful analysis of the data collected
during this experiment, we found that some email tracking
vectors were triggered shortly after email delivery, even with-
out opening the email. Furthermore, we saw that numerous
tracking vectors were triggered when the email was opened

and, crucially, after the email was reported as phishing. These
different triggering requests and events allowed us to identify
distinct systems associated with the email services. These
systems were distinguishable by their distinct identifiable
HTTP headers as well as differential loading of tracking vec-
tors. This latter differential loading refers to the observed
phenomenon of a characteristic subset of tracking vectors
getting triggered whenever an email is processed by one of
the service’s internal email systems. This creates a discernible
pattern of tracking vectors for some systems that we refer
to as a tracking vector pattern (Table 4, 5, 6). The distinct
HTTP headers paired with these tracking vector patterns make
the email systems susceptible to tracking. This behavior was
observed for Gmail, Outlook, and Proton Mail, but not for
Tuta Mail. Because Tuta Mail did not trigger any tracking
vectors at all, we exclude it from the findings.

Based on these observations of distinct behaviors tied to
specific events, we categorize and present our results into three
categories: Prefetching Resources, Email Open, and Email
Reporting. The systems involved in each of these categories
exhibit discernible behavior through either distinguishable
HTTP headers or a unique tracking vector pattern or both.

Service Received Opened Not Reported Not Re-
Opened ported
Gmail 497 398 929 339 158
Outlook 500 469 31 344 156
Proton 500 399 101 349 151
TutaMail 500 447 33 349 151

Table 3: Total number of emails received, opened, unopened
and reported for each email service

System  Pattern image  img meg pla;ra .
Prefetch (p) ¢ submit  src sre .08 picture
Open (0) large  image
Report (r)
Gl-p 92.6% v v v v v
G2-0  100% v v v v
G3-r 99.2% X v v X v
Gd-r 96.1% X v v x v

Table 4: Dominant patterns for Gmail showing triggering
(V') and non-triggering (x) of various email tracking vectors

4.3.1 Prefetching resources

Our data showed that, sometimes, Gmail, Outlook, and Proton
triggered some tracking vectors even before the emails were
opened. This prefetching of resources is consistent with our
findings in the earlier section (§ 3). Table 7 shows the total



System img para

Prefetch (p) Pattern bg  image img picture ahref address CSS  font iframe ©bject object object gyg
%  image submit src src bg html image vid
Open (0) large image

Report (r)
Ol-p 100% X X X X X X X X v X X
02-p 97.1% X X X X X X X X X v v
03-0 91.3% v v v v v v X X X X X X X X X
O04-r 76.5% v X v v v v X X vE X v v v v v
O5-r 64.5% v X X X X X vE vE X vE X X X X X

Table 5: Dominant patterns for Outlook showing triggering (v') and non-triggering (X ) of various email tracking vectors.
* denotes the tracking vector is unique and persistent in all (100%) of the system’s visits

System . . .
b img mg para .
Prefetch (p) ¥ at‘;:m im fge s':;:ﬁ; src st by Picture font SVG
lgl:)f)l:'t(‘()r)) large image
Pl1-p 100% v X v v v v Ve v
P2-0 952% x X v v v v X X
P3-r 70% v VE v v v v X

Table 6: Dominant patterns for Proton showing triggering
(V') and non-triggering (X ) of various email tracking vectors.
* denotes the tracking vector is unique and persistent in all
(100%) of the system’s visits

number of prefetched emails along with the request headers
of the respective systems prefetching the resources. The ident-
fiable patterns in the headers are shown in bold indicating the
parts that make them vulnerable to tracking.

We noticed that a single Gmail system (G1) was associated
with prefetching resources in 309 out of 497 emails. This
system was easily identifiable due to its referer header,
"http://mail.google.com/" (note: the use of HTTP is not
a typographical error). With Outlook, we were able to divide
the requests into two subsystems based on slight differences in
their header values (O1 and O2). However, similar to Gmail,
both of them had characteristically unique headers (Table 7).

In addition to HTTP headers, we also noticed a tracking
vector pattern for these prefetching systems. We found that for
certain systems, these tracking vector patterns were always
consistent, while in some cases, there was minor variability
with some vectors either not getting triggered or triggered
multiple times. For example, we see that for the Outlook sys-
tem O1, the tracking vector pattern is always the same (Table
5), but for Gmail’s G1, the tracking vector pattern can vary
slightly, so we report the most dominant pattern. We found
the most dominant tracking vector pattern in 92.5% of the
prefetched emails (Table 4). Similarly, we identified a unique
tracking vector pattern for all prefetched Outlook emails, as
illustrated in Table 5 for O1. For Proton Mail, the system (P1)

responsible for prefetching consistently displayed a tracking
vector pattern (refer to Table 6) across all prefetched emails.
We are not sure of the exact reasons behind this prefetching
and can only speculate on the intended functionality of these
black box systems. The prefetching of the resources could
be an optimization measure implemented to enhance the per-
formance of the email clients or a privacy measure against
email tracking to give a false open signal. However, due to
the combination of distinct headers and unique pattern of
tracking vectors triggered by these systems while prefetching
resources, these systems are susceptible to tracking.

Summary. We find that Gmail, Outlook, and Proton
Mail each prefetch tracking vectors before email opens—
identifiable by unique HTTP headers (Gmail, Outlook) and
consistent vector patterns (Proton, Outlook)—making these
“prefetch” subsystems all vulnerable to tracking.

4.3.2 Email open

We observed distinct email open signals from services. As in
§ 3, we found that some tracking vectors get re-triggered dur-
ing email open despite being triggered earlier during prefetch.
Table 8 shows the HTTP headers of the systems associated
with the email open action while the tracking vector patterns
for each system are detailed in Tables 4, 5, and 6.

The Gmail system (G2) associated with email opens had
a distinct User-Agent header that was easily identifiable by
the string: GoogleImageProxy. G2 also showed a consistent
vector pattern across all the opened emails. However, since
this pattern resembled that of G1, we cannot rely solely on
it to differentiate between prefetching and email open events.
However, Tables 7 and 8 show that G1 and G2 have very
different HTTP headers providing a clear distinction.

For Outlook, the User-Agent and the user’s IP address
are leaked due to the lack of a proxy. Email prefetching can
be easily distinguished from an email open by examining
the request IP or the unique HTTP headers (Table &). For
prefetching resources, the request IP address belonged to a
Microsoft Autonomous System (AS), while we observed the
recipient’s IP address on email opens. Moreover, the tracking



Service D Prefetched  Identifiable Headers

Gmail G1 309 (61.8%) "user-agent":["Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/42.0.2311.135 Safari/537.36 Edge/12.246
Mozilla/5.0"], "referer": ["http://mail.google.com/"]

Outlook O1 215 (43.0%) "sec-fetch-dest":["iframe"], "user-agent":["Mozilla/5.0 (X11; Linux x86_64)

AppleWebKit/537.36 (KHIML, like Gecko) HeadlessChrome/128.0.6613.18 Safari/537.36"],

02 209 (41.8%)

"sec—-fetch-dest": ["object"], "user-agent":["Mozilla/5.0 (X11; Linux x86_64)

AppleWebKit/537.36 (KHTML, like Gecko) HeadlessChrome/128.0.6613.18 Safari/537.36"]

Proton P1 75 (15.0%)

"user-agent":["Mozilla/5.0 (X11l; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/125.0.0.0 Safari/537.36"]

Table 7: Identifiable parts of headers in HTTP requests seen during email prefetching across various services. The third
column shows both the absolute number of prefetched emails and as a percentage of the total emails received.

Service ID Proxy Identifiable Headers

Gmail G2 v
ggpht .com GoogleImageProxy) "]

"user-agent":["Mozilla/5.0 (Windows NT 5.1; rv:11.0) Gecko Firefox/11.0 (via

Outlook O3 X

"referer": ["https://outlook.live.com/"], "user-agent": readers’s browser UA

Proton P2 v
Chrome/125.0.0.0 Safari/537.36"]

"user-agent":["Mozilla/5.0 (X11l; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)

Table 8: Identifiable parts of headers in HTTP requests seen when users open their emails across various services. The third
column shows whether the HTTP requests are being routed via a proxy.

vectors requested for prefetching were different from those
of email open, as shown in Table 5. We can thus rely on the
tracking vectors as well as the HTTP headers to differentiate
between Outlook’s email prefetching and email open events.

For Proton, the HTTP headers were identical for prefetch-
ing (P1) and email open (P2), which was via its proxy. How-
ever, we found that the reliability of the tracking vector pat-
terns helped distinguish between an email open and prefetch-
ing, thanks to our diverse collection of tracking vectors. We
observed that certain tracking vectors are exclusively re-
quested during prefetching and never during the email open,
as shown in Table 6. For example, prefetching (P1) can be eas-
ily distinguished from an email open (P2), because tracking
vectors such as bg image, font, and SVG are absent for P2.
Note that, to differentiate between P1 and P2, it suffices to
check for just one unique tracking vector rather than matching
the entire pattern, which further simplifies the process.

The combination of unique HTTP headers and tracking vec-
tor patterns exhibited by these systems involved in prefetching
and opening emails enables an attacker to accurately deter-
mine when an email has been opened. This has significant
implications for the attack scenario that we discussed in § 2.

Summary. We find that each service triggers a distinct “email
open” signal—identifiable by HTTP headers (Gmail identified
by its User-Agent, Outlook via unique HTTP headers/IP), and
unique tracking vectors (Proton)—making email open events
reliably distinguishable from prefetching.

4.3.3 Email reporting

Given that we can already reliably differentiate between
prefetching and an email open, the ability to track email phish-
ing reports would be key for our proposed attack (§ 2). For
this, we observed additional HTTP requests being made by
all services after the emails were reported as phishing. This
indicates that the emails were rendered again for examination
by the systems involved in the reporting infrastructure. Table
9 shows the HTTP request headers and the percentage of re-
ported emails that triggered a post-report request. Overall, we
found that each system involved in handling email reporting
is distinct from systems responsible for prefetching resources
and opening emails, as shown by variations in their HTTP
headers and unique tracking vector patterns.

We identified two systems (denoted G3 and G4) with dis-
tinct User-Agent headers for Gmail (Table 9). The G3 sys-
tem, which included the string Gmail-content-samplingin
its HTTP headers, was observed in 245 out of the 339 emails
that were reported. Crucially, this HTTP header was absent
in all 158 non-reported emails, clearly indicating some level
of email inspection conducted by Gmail’s email reporting
infrastructure. The G4 system, with a distinct HTTP header
having the string GoogleOther, was found in 51 emails out
of the 339 reported emails. We note that G4 is likely not a
security-related crawler, as it was intended to reduce the crawl
capacity of Googlebot[50]. Both systems, G3 and G4, can
be differentiated from an email opened by the recipient due



Service ID Reported Identifiable Headers

Gmail G3  245/339 (72.3%)

"user-agent":["Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like

Gecko) Chrome/42.0.2311.135 Safari/537.36 Edge/12.246 Gmail-content-sampling"]

G4  51/339 (15.0%)

"user-agent": ["GoogleOther"]

Outlook 04  342/344 (99.4%)

"user-agent":["Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like

Gecko) Chrome/109.0.0.0 Safari/537.36"]

05 342/344 (99.4%) "sec-fetch-dest":

["document"], "user-agent":

["Mozilla/5.0 (Windows NT 10.0; Win64;

x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/<125/126/127> Safari/537.36"]

Proton P3 10/349 (2.9%)

"referer": ["https://phishing.protontech.ch/"], "user-agent": ["Mozilla/5.0 (*; *)

AppleWebKit/537.36 (*, like Gecko) Chrome/129.0.0.0 Safari/537.36"]

Table 9: Identifiable parts of headers in HTTP requests seen after reporting a subset of emails as “phishing” across systems
of various services. The third column shows the number of emails for which requests from the specific anti-phishing system
were seen and the total number of emails reported to that service.

to the difference in the User-Agent string and the difference
in the pattern of tracking vectors (Table 4).

For Outlook, we observed 342 out of 344 reported emails
had requests from a system (O4) with a specific 109.0.0.0
Chrome version number in the User-Agent string. The sys-
tem OS was also associated with the same 342 reported
Outlook emails and had a distinct HTTP header as detailed
in Table 9. Both O4 and OS5 exhibit unique tracking vec-
tors as seen in Table 5 that are exclusively triggered by
these systems, rendering these reporting systems suscepti-
ble to tracking. With Proton, we noticed P3’s requests as
containing a distinct URL in their Referer header: https:
//phishing.protontech.ch, in 10 out of 349 reported
emails. Along with this HTTP header, we also found that
tracking vector patterns lead to the identification of Proton’s
anti-phishing systems, as image submit vector was uniquely
triggered only by P3 as shown in Table 6.

Fig. 3 shows the time taken to get tracking vector requests
from the email reporting systems of Gmail, Proton, and Out-
look after an email was reported. We see that reporting sys-
tems from Outlook and Gmail are quick to respond to phishing
reports. Specifically, 04, O5 and G3 systems triggered these
tracking vectors within a minute of the user report in most
cases. In contrast, Proton’s reporting system was significantly
slower in comparison. It responded within several minutes
for fewer than 40% of these emails but took several hours to
days to trigger tracking vectors in the remaining 60%. This
substantial delay in Proton’s system means attackers can reli-
ably evade detection by simply using timing-based cloaking
attacks, where phishing content goes benign within a few
minutes of email open.

Summary. We find that each reporting service gives a unique
“post-report” signal—Gmail’s via its User-Agent header,
Outlook’s via its unique HTTP headers, and Proton’s via
its Referer header as well as a unique tracking vector pattern
(image submit vector)—making email phishing reporting
activities of end users apparent to attackers prior to any secu-
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Figure 3: Time distribution of tracking signal requests after
reporting emails for Gmail, Outlook and Proton Mail.
X-axis is presented in two scales for readability purposes
(lower X-axis is in seconds).

rity actions pursued by email services.

4.3.4 Honey website visits

We observed visits to the honey URLSs included in the emails
that were reported to Outlook. The emails that were reported
to Gmail and Proton did not trigger any visits to the honey
websites. We received a total of 317 visits from 344 reported
Outlook emails. Each of these visits to the honey URL im-
mediately followed the corresponding email report event. We
observed only 16 unique IP addresses across these 317 visits
in our dataset, all of which belonged to the Microsoft AS. In
the case of JS-based fingerprints, most of Outlook’s crawlers
emanated only a single unique Canvas and JS-based font fin-
gerprint (214/317 visits). In the remaining visits (103/317), we
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did not receive any fingerprints during the Outlook crawlers’
visits indicating a non-standard browser which in itself is
anomalous behavior. Thus, the low diversity in these finger-
prints, fingerprint anomaly, and limited network address di-
versity can all be leveraged to successfully evade Outlook’s
phishing reporting crawlers as described in prior work [25].

4.4 Implications

Overall, we find that the presence of identifiable HTTP head-
ers, limited network address diversity, and differential loading
of the tracking vectors by the email systems make it possible
to identify and distinguish each event (prefetching resources,
email opening, and email reporting) and each system. This
information gained from this experiment further solidifies our
idea of an evasive phishing attack leveraging email tracking
vectors discussed in § 2. It is clear that the opening of the
emails can be tracked reliably under the default settings em-
ployed by these email clients. Furthermore, the email report-
ing systems for these services also leak information through
the email tracking vectors and HTTP request headers. Such
leaked information can be used to identify the loading of
emails by these security crawlers and devise a cloaking-based
phishing attack. An attacker can activate a phishing attack
when the recipient opens the email. If the email is reported,
the tracking vectors give the attacker a signal, in which case,
the phishing payload can be deactivated.

5 Simulation of an end-to-end attack

In this section, we present a confirmation experiment simulat-
ing an end-to-end phishing attack to reinforce the implications
of our findings in § 4.3 and demonstrate the practicality of
our attack discussed in § 2 and § 4.4. We show the attack’s
ability to evade detection despite aggressive email reporting
by leveraging the email tracking vectors covered in § 4. To
demonstrate the effectiveness of these vectors in launching
successful phishing campaigns, we built evasive phishing web-
sites powered by intelligence from email tracking vectors and
measured their lifespan against browser blocklists.

5.1 Setup

Our setup consisted of the Sending module (§ 4.1.3), the Re-
porting module (§ 4.1.5), a collection of simulated phishing
websites, and a Monitoring module. We sent emails consist-
ing of unique URLs to our phishing websites across email
accounts of three services: Gmail, Proton, and Outlook. For
each email, we visited the embedded URL and then reported
the email as phishing. We reused the receiving accounts de-
scribed in § 4.1.2, but created new sending accounts, which
we warmed up before using them for the experiment.

5.1.1 Sending module

We made minor modifications to the Sending module de-
scribed in § 4.1.3. Specifically, to simulate a real-world phish-
ing email, we modified the email subject and content to reflect
a phishing context rather than the neutral tone used previously.
The modified content informed recipients of a failed transac-
tion and urged them to visit the embedded URL to verify their
PayPal transaction history. This URL in the email directed
users to a simulated phishing site.

5.1.2 Reporting module

We used the Reporting module from § 4.1.5 with two key
modifications. First, we disabled Google Chrome’s client-side
Safe Browsing® feature, which is enabled by default to provide
client-side protection against phishing and other malicious
content. Chrome also sends full URLs and bits of page content
to Google if a site appears suspicious. Therefore, to ensure
any blocking to the phishing sites was solely by the security
crawlers of the email services—and not by the client-side
phishing protection—we disabled the Safe Browsing feature
during reporting emails.

Second, we modified the Reporting module to click on the
embedded URL and capture a screenshot of the phishing page
before reporting the email. We do this to simulate a potential
real-world victim who is likely to click on the URL and land
on the phishing site. This step also allows us to confirm that
the phishing sites are live and serving phishing content to
victims. Additionally, we also included this step to account
for any potential behavioral differences triggered by clicking
on the embedded URL, which were not observed in § 4.3.

5.1.3 Simulated phishing sites

For this experiment, we use two varieties of simulated phish-
ing websites: smart evasive sites and baseline sites following
the approach used in prior work [25, 44]. The baseline sites
are simple sites that show phishing content to any visitor
whenever the URL embedded in an email is accessed. If the
URL is not associated with an email, benign content is served.
We use the baseline sites to validate our experiment as realis-
tic by demonstrating that these sites get successfully blocked
as expected through our email reporting process.

The smart sites, in contrast, leverage the intelligence from
the email tracking vectors to dynamically decide whether
to serve phishing or benign content. The smart sites use the
evasion logic discussed in § 2 (Fig. 2). Specifically, we lever-
age the findings from § 4.3.2 to track the opening of specific
emails. Only after this particular event occurs for a given
email will a subsequent visit to the URL embedded in the
email, trigger the smart site to serve phishing content. Simi-
larly, based on insights from § 4.3.3, we can detect when an

https://safebrowsing.google.com/
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email has been reported, at which point the smart site perma-
nently switches to serving benign content for the associated
URL. We note that it was not necessary to utilize our findings
from § 4.3.4 to evade Outlook’s phishing crawler visits, as
the email open and reporting signals alone were sufficient for
the success of our experiments.

5.1.4 Monitoring module

Our Monitoring module periodically checks whether phishing
sites are active or have been blocked by web browsers. We
use Google Chrome and Microsoft Edge to check if the sites
have been blocked by their respective GSB and SmartScreen
blocklists, which together cover the majority of web users.
Prior work has used a similar approach to evaluate the lifetime
of phishing sites [25, 43, 44]. Our module automates this
process by using GUI automation to load the URLs in both
browsers with default settings, capturing a screenshot and
timestamp for each visit. We manually verify the screenshots
to determine if a site is still active or has been blocked.

5.2 Deployment

We conducted this experiment 41 days after the conclusion of
the previous experiment described in § 4. This intentional gap
between the two experiments was to assess the stability of the
tracking vectors and HTTP headers across the email services
observed previously. We registered six .com domains—three
for baseline sites and three for smart sites. The phishing pay-
loads consisted of lookalike login pages for PayPal and Bank
of America, as well as a replica of a Microsoft pop-up scam.
For benign content, we redirected the visitor to PayPal’s of-
ficial support page, consistent with the email’s content of
PayPal payment issues. We removed the Referer header in
the redirect request to avoid leaking our URLSs to PayPal. Any
request to URLs not associated with any email was served a
generic “site under construction” message.

The Sending module sent 45 emails per email service across
three baseline domains, with each email containing a unique
URL. These emails were randomly sent across 10 receiving
accounts per service, totaling 135 emails for the baseline
sites. For the smart sites, we sent 120 emails per service,
each containing a unique URL, resulting in 360 emails in
total. The Reporting module reported all the received emails
as “phishing”. We conducted our experiment over a 24-day
period in January 2025.

5.3 Results

Our results show that the three baseline sites were blocked
quickly, while the smart websites remained active for 24 days
until the end of our experiments. The first block to the baseline
sites took only around 4 hours and 30 minutes after the first
email report. The baseline sites received a total of 114 visits

from the crawlers of the email services. In contrast, our smart
websites were not blocked despite getting a total of 275 visits
from the crawlers belonging to the email services. Table 10
shows the detailed results of reporting emails for the baseline
sites, while Table 11 shows the results of reporting emails for
the smart sites.

Service # # # # #
Reports Visits URLs Unique  Unique
P AS
Gmail 45 50 21 (46.6%) 39 25
Outlook 45 60 41 91.1%) 16 1
Proton 45 4 1(2.2%) 4 1

Table 10: Phishing experiment: traffic for baseline sites

Service # # # # # # #
Reports Visits URLs Unique Unique Open Report

P AS Loads Loads

60

Gmail 120 153 (50.0%) 110 45 120 120
Outlook 120 119 119 15 1 120 120
(99.2%)
1
Proton 120 3 (0.8%) 3 2 0 0

Table 11: Phishing experiment: traffic for smart evasive
sites

Despite starting the experiment 41 days after the conclusion
of our previous experiment, we observed consistent behav-
ior across systems—identical headers and tracking vector
patterns, as observed in § 4. Furthermore, we observed sim-
ilar behavior with Outlook’s crawlers visiting the phishing
sites as seen in § 4.3.4. For the baseline sites, 15 of the 16
visiting IPs, and for smart sites, all 15 Outlook IPs, had al-
ready been encountered in the previous experiment. 131 out
of 179 requests to the phishing sites had one unique Can-
vas fingerprint and JS-based font fingerprint which was the
same as seen previously. The remaining requests anoma-
lously did not provide any fingerprints just as before. Ad-
ditionally, all the visiting crawlers belonged to the single AS,
MICROSOFT-CORP-MSN-AS-BLOCK, US. These results, con-
sistent with our previous findings show a critical lack of finger-
print, IP, and AS diversity in Outlook’s crawler infrastructure
shows their highly susceptible to alternative fingerprinting
and evasive attacks aimed directly at their web crawlers [25].

In addition to the URL visits after email reporting, we ob-
served that Gmail uses a click-time link protection7 feature,
where we noticed Gmail crawlers proactively visiting embed-
ded URLSs shortly after a user clicks on them—regardless of

Thttps://support.google.com/mail/answer/10173182
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whether the email is reported. While these crawlers exhib-
ited diversity in AS and IP addresses, as shown in Table 10
and Table 11, they failed to execute any fingerprinting code,
which can be leveraged to evade these crawlers. However, our
attack model (§ 2) does not rely on this anomaly for evasion.
Instead, we serve the phishing payload to the recipient only
once, triggered by the recipient’s initial “email open” signal.
Upon clicking the link, the user is shown the phishing page.
This action, however, turns the payload benign for subsequent
visits. If the same recipient revisits the link, they must reopen
the email and retrigger the “email open” signal to activate
the malicious payload again. This mechanism ensures that
Gmail’s security crawlers never encounter the phishing pay-
load while the intended recipient does.

6 Recommended countermeasures

As discussed in § 4, our attacks primarily rely on the ability to
infer the prefetching, email opening, and email reporting ac-
tivities via tracking signals. So, by blurring these signals, one
can potentially suppress these attacks as we discuss below.

Email reporting signals. The most dangerous signal is ar-
guably the email reporting signals that are triggered when-
ever a reporting system internally loads a candidate phishing
email’s objects (§ 4.3.3). In our attack, this signal immediately
deactivates the phishing content, thus hiding the web page
permanently from the reporting system. To address this, email
service operators should consider the following measures:

1. Operators can completely suppress the email reporting
signals by not loading any remote objects after receiving
the reports from users. While this will mitigate our attack,
it may cause collateral damage as other systems might
rely on the missed image content (e.g., brand logos [36])
to determine the overall phishing intention of the email.

2. Even if the above solution were implemented, the at-
tacker can still employ a ‘temporal defusion” logic to
automatically deactivate their attack payload after a pre-
defined time window following the opening of an email.
Given that a typical user spends only 9 seconds on aver-
age with an email [5], this will give a very short window
for the phishing reporting systems to act promptly and
capture the live phishing payload. We thus recommend
email services to respond quickly upon receiving email
reports. Current data seems to suggest that only Google
and Outlook act quickly, while Proton is slower (Fig. 3).

3. Caching the email objects during prefetching instead
of reloading them after reporting is another defensive
option. But this demands enormous storage capacity as
all remote objects in emails need to be stored for a long
time to accommodate users who might not immediately
open and report their emails.

4. Instead of suppressing email report signals, a reporting
system could simply emulate the service’s correspond-

ing “email open” signals (see Table 8, for example). In
particular, there is no valid reason for anti-phishing sys-
tems of Gmail and Proton to “announce” their presence
in their request headers (see Table 9). However, this ap-
proach will still be insufficient in the case of targeted
users, as the “email open” signal will now be triggered
twice, which may raise suspicion and prompt evasive
action by the attacker. In contrast, for untargeted users,
this approach is effective as the email load only happens
a single time, thus leaving the phishing page exposed in
its activated state increasing the likelihood of detection.

5. Email service providers should also strongly consider
homogenizing the network behavior of their reporting,
prefetching, and proxying systems. This includes their
source network addresses as well as the lists of specific
remote objects that they load, i.e. the triggered tracking
vector patterns (see Tables 4, 5, 6). From an attacker’s
perspective, this will make all email-related activities
(either prefetching or reporting) look similar thus con-
fusing them about whether the subsequent site visit is
from a victim or an anti-phishing system.

Email open signals. In this paper, we showed that the email
tracking signals that were traditionally considered a threat to
privacy also pose a security threat when exploited for phishing
attacks. Specifically, the fact that most email clients support
email open tracking by default (§ 3) enables attackers to ac-
tivate phishing pages in a just-in-time manner for a limited
duration. To prevent this, email clients can reverse their de-
fault setting of automatically loading images. This will be
“doubly defensive”, offering both security and privacy benefits
to users. However, it might introduce usability issues, as users
will have a reduced default quality of their email service due to
blocked images. An alternative as discussed earlier, would be
for the email service to cache all email objects during prefetch-
ing and thus suppress all email open signals, unfortunately
requiring significant storage resources. It is also important to
note that reliably blocking all remote objects is challenging
and prone to errors due to the increasing complexity of the
web HTML, as shown in prior work [46].

Another mitigation strategy is for services to emit a non-
deterministic number of “email open” signals. This prevents
an attacker from reliably distinguishing a legitimate “email
open” by a user from one generated by the service. This
disrupts the attacker’s ability to reliably activate the phishing
payload. Note that a single, deterministic signal is insufficient,
as the attacker can simply choose to ignore it. Thus, a non-
deterministic number of “email open” signals is important
here. However, an attacker can still choose to treat the first
“email open” signal as genuine and proceed with the attack.
In such a scenario, the conversion rate for the attacker will go
down, but a limited number of victims may still be affected.

In summary, we recommend that carefully homogenizing
email activity signals—such as HTTP headers, supported
HTTP objects and crawling infrastructure across all stages of



processing, combined with non-deterministic pre-rendering,
offers a viable defense against our evasion attacks while bal-
ancing the storage and usability constraints.

7 Discussion

Alternative attacks. We now discuss some alternative eva-
sion attacks compared to ours. Single-use URLSs that deliver
the phishing payload only once can be one such alternative.
While this approach can prevent subsequent detection, it is
still vulnerable to premature detection. Specifically, if a cau-
tious target victim reports the email without opening the link,
the link will now be prone to the anti-phishing crawler and will
be detected. In our attack on the other hand, email phishing
reporting activity deactivates the phishing payload making it
elusive to the anti-phishing crawlers. Gmail employs a “click-
time link protection” feature that proactively visits embedded
URLSs after a user clicks on them. This URL crawling happens
regardless of whether the email has been reported, making it
unreliable to use the “email report” signal alone to deactivate
the phishing content. Nevertheless, as discussed in § 5.3, this
preemptive crawling does not render our attacks ineffective
due to the activation and deactivation of phishing payload
after the victim’s email open and visit events respectively. As
discussed in the previous section, a careful homogenization
of email activity signals combined with a non-deterministic
of pre-rendering activities provides the best chance to defend
against our proposed evasion attacks.

Limitations. One limitation of our study is the potential
miss on capturing the full range of behaviors in our email
accounts that real-world users may experience. To minimize
this, we made sure that each account for an email service was
connected through a VPN from a unique geographic location
(§ 4.1.2). Another limitation of our study arises from the inher-
ent nature of these email services as black box systems. While
our goal is to study the behavior of email services towards
emails that are reported as phishing, we accept that we cannot
for certain know if other services like spam filtering or other
heuristics, interfere with this behavior. Since the email ser-
vices we study are black boxes, we may not always be entirely
correct in our explanation of certain events. For example, in
the case of Proton, only 10 out of the 349 reported emails
triggered the tracking vectors (§ 4.3.3). While we observe and
accurately report these numbers, we can only speculate that
this may be occurring due to heavy email sampling at Proton
Mail’s end. Similarly, our reasoning for resource prefetching
in some emails being prefetched is a valid argument rather
than a definitive conclusion (§ 4.3.1). However, we stress that
regardless of the arguments, the end effect observed is still
the same in terms of threats to privacy and security.

Responsible disclosure. We followed a responsible disclo-
sure protocol and submitted tailored vulnerability reports to
each affected email provider, detailing the issues presented in

this paper along with recommended mitigations. We received
acknowledgements from all these services (Google, Proton,
and Microsoft). Further, Google confirmed opening a bug
report based on our disclosure and indicated that fixes are
in progress. Our disclosure report was also awarded with
a Google Vulnerability Reward of US$ 2,337.00. It was
placed in the category of “abuse-related methodologies” with
“Medium impact” and “Medium exploitation likelihood” in-
dicating the real-world relevance of our research findings.
Proton’s security team informed us that they implemented
some fixes to remedy the attack, most notably suppressing ex-
ternal resource loading for phishing reporting systems. They
also confirmed that they were exploring anti-fingerprinting
techniques and improving their image caching. Microsoft is
still reviewing the issue with its security team as of the time
of compiling this manuscript. In addition to the disclosure
report, we also provided an option to embargo our paper un-
til the conference to give the service providers ample time
window to fix the issues that we identified in our disclosure
report. One service provider requested this, citing the need
for additional time to implement all the necessary fixes due
to the “complexity of the case”.

We also submitted a disclosure report to other service
providers that we evaluated for privacy against tracking vec-
tors (§ 3), but did not evaluate their email reporting systems
(§ 4). Our disclosure report described our findings and the
potential for attack against their phishing reporting systems,
along with recommendations to counteract them.

8 Related work

Email privacy. Prior work has studied the implications of
email tracking across various email clients. Englehardt et
al. [29] identified widespread privacy risks in email clients
through pixel tracking as well as leaking information to third-
parties through headers, e.g., Referer. It is encouraging that
some email clients have adopted the use of a proxy after the
implications of email tracking were highlighted in previous
work [29, 55]. While we analyze different email clients for
their privacy, our primary objective is to demonstrate how
poor privacy features of these email clients can be exploited
as a security vulnerability to launch highly effective phishing
attacks. Previous work [29, 30, 31, 55] has identified pixel
tracking as the primary method used to track email recipients.
We have expanded the email tracking to additional vectors
along with pixel tracking. Some of these tracking vectors e.g.,
<link> to include CSS, @font-face have been evaluated in
prior works in the context of CSS-based fingerprinting [35,
53, 54] while our use case is for email open tracking.

Email reporting. The phishing reporting ecosystem has
been comprehensively evaluated for smishing, vishing, and
phishing email attacks in previous work [52]. Additionally,
in their work, Sun et al.[52] reported phishing sites through



publicly available channels and not built-in dedicated function
e.g., “Report phishing Button” in Gmail. In our work, we
focus on the reporting of phishing emails on email services
using the built-in dedicated button to report phishing emails
to understand their effectiveness. Moreover, we are concerned
about the behavior of these security crawlers employed by the
email reporting systems from a privacy point of view.

Fingerprinting and cloaking attacks. Prior work has em-
ployed cloaking techniques against security crawlers that in-
spect websites using controlled phishing sites [25, 28, 40, 43,
44, 56]. These studies focused on limitation of crawlers that
visit the websites for inspections whose visits were solicited
via dedicated web sites setup to receiving phishing URL re-
ports [25, 43]. However, our research does not focus on such
URL reports but rather evaluates the reporting made through
dedicated buttons provided by each email service. Our eva-
sion techniques proposed are solely based on email tracking
vectors that thus far have only been deemed to have privacy
implications for email clients.

The advantage of our attack over previously seen
fingerprinting-based cloaking techniques lies in its use of
email interaction signals that makes for a more powerful eva-
sion mechanism in the context of email-based phishing at-
tacks. Prior attacks, such as PhishPrint [25], cloak content to
specific crawlers with known fingerprints. This means that
the effectiveness of this approach is critically dependent on
maintaining accurate fingerprint profiles for a large and evolv-
ing set of crawlers that can visit the phishing site, as seen
previously in [25]. Any previously unseen crawler will be
served the phishing content revealing the nature of the phish-
ing site. In contrast, our attacks rely on characteristic “email
open” tracking signals to activate the phishing site content
only after the email has been opened/rendered by the receiver.
Thus, any unknown crawler that stumbles upon the site will
not see the phishing content, leading to more elusive phishing
sites. Additionally, as we saw in our work (§ 4), the diversity
of the email subsystems is very limited compared to the web
security crawlers [25] that inspect the web pages. Hence, it is
easier to maintain a relatively short list of identifiable headers
and tracking vectors to keep track of email interaction signals,
abusing them to launch elusive phishing content.

9 Conclusion

We performed the first study focused on real-world phishing
email reporting systems. For this, we weaponized e-mail track-
ing, a well-known privacy issue, in a new security-oriented
context of evasive phishing attacks. In this attack setting, we
evaluated the resilience of popular email services and found
that all of them were vulnerable to evasive phishing attacks
affecting more than 2 billion people. We confirm these weak-
nesses in the form of end-to-end simulated phishing experi-
ments, which demonstrate the ability to create long-lasting

phishing campaigns using our attack mechanism. Finally, we
discuss several countermeasures to help ameliorate this issue.

Ethics considerations

We approached this research with careful and deliberate atten-
tion to ethical responsibility, aiming to minimize any potential
harm while evaluating the email services. Although we did
not obtain prior consent from the email providers involved in
our experiments, we carefully considered this decision. We
determined that the practical challenges of identifying and
reaching out to the appropriate point of contact within such
large organizations (email providers) authorized to provide
consent to our work made obtaining consent infeasible. Due to
this, we designed our methodology along the lines of previous
works [25, 28, 40, 43, 44, 56].

Our experiments involved sending a total of 1,997 emails
for the study of email reporting infrastructure (§ 4) over sev-
eral days, and 495 emails over five days to evaluate the re-
sponse to phishing reports (§ 5). We argue that both the vol-
ume and the rate of these emails are negligible in comparison
to the daily scale handled by these services. The total num-
ber of phishing reports submitted across the entire study was
1,876. While we acknowledge that each email reported by us
imposes a waste of time and resources for these email services,
we argue that the total number of email reports (1,876) is very
small in comparison to the large number of email reports that
these services receive daily. For context, Gmail blocks around
100 million phishing emails every day [17], making our total
of 1,876 email reports (across all services) negligible.

To further evaluate the ethical implications of our approach,
we consulted with the authors of related prior work [25] while
planning our experiments, who shared their experience with
us. They described how the product lead from Google Safe
Browsing encouraged their team to continue sending phishing
report URLs, justifying that the volume of phishing reports
sent out by them had a negligible impact on Google, which
receives an astronomical number of phishing reports daily.

Additionally, during the account-creation phase of our ex-
periments, some of our accounts were flagged and blocked
by ProtonMail. We reached out to them and clarified that the
accounts were created as part of our research project. Proton-
Mail acknowledged the need for our study and reactivated
our accounts, indicating they were happy to let us continue
with our study. In light of the feedback, statistics, and the
overall setup of our experiments, we concluded that neither
our emails nor our reports negatively affected any of these ser-
vices. Instead, the findings from our paper can help strengthen
these services against sophisticated evasions that attackers
could already be silently exploiting the identified email-open
signals in the wild. Furthermore, prior work in evaluating
web-based phishing reporting systems [25, 26, 28, 43, 44] has
also followed a similar procedure of submitting small-scale
false phishing reports to investigate the security of real-world



anti-phishing systems.

On the website front, the phishing sites were simulated
and non-functional and thus not harmful to real users in the
unlikely event that they would somehow stumble upon them.
The URLSs were not shared outside of the reported emails, both
for research results’ fidelity and ethical purposes. The email
accounts were not accessible by anyone except the authors,
and these accounts were not used to communicate with real
users. For creating email accounts, we used personal phone
numbers whenever required. Further, we have also clearly
communicated the details of our measurements, including
the number of false reports we made to these services in our
disclosure reports to these email services.

Open science

To comply with the open science policy, we have made the
code from our work publicly available®. We would like to note
that some of the data and code can be abused by malicious
parties against the email services to launch their own phishing
attacks. This includes the code used in launching phishing
attacks, dataset with the IP Addresses of the crawlers that
are used by these email services. To understand how prior
work [25] approached the disclosure of similar data, we ap-
proached Acharya and Vadrevu, who shared that they received
arequest from the anti-phishing scanners to not make the data
of their hosts publicly available. In a similar vein, we have
not made this forensic data publicly available. However, we
have made this data available on a restrictive basis to bona
fide researchers via Zenodo’.
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Vector
bg  image img |mg para picture audio CSS font SVG video | IP
image submit src sre bg Leak

Service large image
Gmail x v v v Vv v X X X X x x
Outlook | vV v v Vv V v v X X X v v
Yahoo x v v v Vv v X X X X x x
Proton v X X X v v X X v v X X
Mail.com| v* x v v v x v X X X v
GMX v X v v Y v X v X X X v
Tuta Mail| x X X X X X X X X X X X*
AOL X v v v v v X X X X X X

Table 12: Tracking vectors for prefetch and email open
stages of various services on the Android platform. Each
v represents the vector getting triggered during one of the
stages. All cases in which the vector was triggered during
email open stage are in red indicating serious security
implications. Cases in which vectors are activated only
during prefetch stage are in yellow (with a single v') while
all others are in green. x” denotes the IP address of the
client leaking when overriding default settings to allow
image loading.



Name Trigger Action  Description Tracking Vector Usage Example Ref.
List of all non-deprecated HTML tags that refer to remote URLSs that can be leveraged for e-mail tracking
a href CLICK Used to create hyperlinks to navigate to other <a href="TRACKING_URL"></a> [9]
pages
address tag CLICK Used to define contact information <address><a [10]
href="TRACKING_URL"></a></address>
audio RENDER Used to embed audio content <audio controls preload="auto" [11]
autoplay><source
src="TRACKING_URL/song.ogg"
type="audio/ogg"></audio>
CSS RENDER Used to link external CSS file <link rel="stylesheet" [18]
href="TRACKING_URL/app.css">
iframe RENDER Used to embed another HTML document within =~ <iframe src="TRACKING_URL" [14]
the current page height="2px" width="2px"></iframe>
image submit RENDER Used to add an external image in form submis- <input type="image" [16]
sion button src="TRACKING_URL/logo.png"
width="2px" height="2px">
img src RENDER Used to add an external image to the HTML <img src="TRACKING_URL/logo_lxl.png"/> [15]
email from specified source URL (1x1 size).
This specific size is monitored separately to
identify any distinct behaviors associated with
tracking pixels, which are commonly used in
emails [31].
img src large RENDER Used to add an external image to the HTML <img [15]
email from specified source URL (100x100 size) =~ src="TRACKING_URL/logo_100x100.png" />
object html RENDER Used to embed HTML documents or multimedia ~ <object data="TRACKING_URL" [19]
width="2px" height="2px"></object>
object image RENDER Used as an alternative method to embed images <object data="TRACKING_URL/img.png" [19]
width="2px" height="2px"></object>
object vid RENDER Used as an alternative method to embed videos <object data="TRACKING_URL/video.mp4" [19]
width="2px" height="2px"></object>
picture RENDER Used to set multiple image sources <picture><source [21]
srcset="TRACKING_URL/imgl.png"
media=" (orientation: portrait)" /><img
src="TRACKING_URL/img2.png" alt=""
/></picture>
svg inline RENDER Used to embed vector graphics in HTML <svg [22]
xmlns="http://www.w3.0rg/2000/svg"
xmlns:xlink =
"http://www.w3.0rg/1999/x1ink"> <image
xlink:href="TRACKING_URL/img.svg"/>
</svg>
video RENDER Used to include video content <video preload="metadata" [23]
width="2" height="2" controls
autoplay><source src="TRACKING_URL"
type="video/mp4"></video>
Sample CSS properties we used that refer to remote URLs that can be leveraged for e-mail tracking
bg image (CSS) RENDER Used to set background image body {background-image: [12]
url ("TRACKING\_URL/img.png");}
font (CSS) RENDER Used to include external fonts @font-face{font-family: "myFont"; src: [13]
url ("TRACKING_URL") ; }
para bg image (CSS) RENDER Used to set background image for a paragraph <p style="background-image:url ( [20]

using CSS

"TRACKING_URL/bg.png" );"> </p>

Table 13: All HTML and CSS tracking vectors that can track pre-fetching, opening, and reporting stages of emails in the eight

email services we studied in this project. The “Trigger Action” column describes what the e-mail receiving client (i.e. prefetch

email server, end user, or phishing report system) has to do to trigger the tracking associated tracking vector: either a CLICK on

the link in the email or a simple RENDER of the e-mail’s content. TRACKING_URL refers to a unique URL path created and
controlled by the attacker used for tracking email activities.
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A Artifact Appendix
A.1 Abstract

In our paper, we repurposed various email tracking vectors to
profile and evade the anti-phishing systems employed by ma-
jor email service providers. We identified the different HTTP
headers and tracking vectors triggered by the email services
during different stages like email prefetching, email opening
and after email reporting. Due to the distinct behavior exhib-
ited by the email systems, we were able to identify and evade
them using evasive phishing attacks. The artifact provided
contains the dataset and the code used for the project. The
dataset is accompanied by a helper script to execute queries to
generate the results presented in the paper. README files are
also included to facilitate easy navigation and reproduction
of results found in the paper.

A.2 Description & Requirements

To support these findings, this artifact is provided in two main
components:

1. (Dataset and Results): We provide the dataset in a self-
contained Docker environment that includes a Post-
greSQL database injected with the dataset from our ex-
periments. We also provide an accompanying Python
script that allows for the reproducibility of the major
tables and figures presented in our paper.

2. Part B (Code): The code provided includes three soft-
ware components: email-sending module, a websites
module and a GUI automation module. This part uses
Docker to run the database but runs our three main appli-
cations (two Laravel web apps, one Python automation
script) locally on host machine. These applications run
locally with a small, artificial database to demonstrate
their architecture and testability without requiring live
credentials or external network access such as live web
servers and domains.

A.2.1 Security, privacy, and ethical concerns

Throughout our research, we took several measures to mitigate
any security, privacy or ethical concerns. Our investigation

Nick Nikiforakis
Stony Brook University

Phani Vadrevu
Louisiana State University

findings pose security risks to the email providers if they are
exploited and is not intended for unauthorized or malicious
actors. Hence, we have made the dataset and the websites code
module that exploits the dataset to launch evasive phishing
campaigns are available with restricted access on Zenodo.
Additionally, the provided applications are operating locally
without the ability to perform live actions such as sending
emails and launching phishing sites. There are no destructive
steps, and no security mechanisms on the evaluator’s machine
need to be disabled.

A.2.2 How to access

Our artifact is available on Zenodo. Our public version with
the email sending code and the GUI automation code are avail-
able here: https://doi.org/10.5281/zenodo.15612284.
Our restricted repository that contains the dataset, web-
sites module code, email sending code and GUI automa-
tion code are available here: https://doi.org/10.5281/
zenodo.15612193

A.2.3 Hardware dependencies

None.

A.2.4 Software dependencies
The following tools are required to be installed on your device:

¢ Operating System: Linux (tested on Ubuntu 22.04) or
macOS (tested on macOS 15.5). The GUI automation
script has only been tested on Windows 11.

* Docker and Docker Compose: For running the Post-
greSQL database containers.

* PHP 8.3+ and Composer 2.x: For running the Laravel
applications locally in Part B.

e Python 3.9+ and virtualenv: For running the analysis
and automation scripts.

* The ‘whois’ command-line utility: This is a manda-
tory dependency for Part B (the Functional Demo). Our
Laravel application uses it to perform lookups on IP
addresses.


https://doi.org/10.5281/zenodo.15612284
https://doi.org/10.5281/zenodo.15612193
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A.2.5 Benchmarks

None.

A.3 Set-up

This section provides the complete installation and configura-
tion steps for the artifact.

A.3.1 Installation

This setup allows for the direct regeneration of our paper’s
results from the provided dataset.

1. Start the Environment: Navigate to the results direc-
tory. Then, execute the following command to start the
PostgreSQL container and automatically load the full
dataset:

docker-compose up --build -d

2. Install Python Dependencies: Navigate to the
results/analysis directory and run:

pip install -r requirements.txt

3. Start the Database: Navigate to the code directory and
start the PostgreSQL container:

docker-compose up -d

4. Set up the email-sender and database: Go to the appli-
cation directory email-sending, install dependencies
and configure the application:

composer install

cp .env.example .env

php artisan key:generate
php artisan migrate --seed

Expected Output: The console will show successful
migration and seeding messages. The database is now
correctly structured and populated for the demo.

5. Run the websites Application: This application serves
the web pages used for phishing simulation and honey
sites. Navigate to its directory, websites-code, install
its dependencies and then start the local web server:

composer install

cp .env.example .env

php artisan key:generate

php artisan serve --port=8000

A.3.2 Basic Test

1. Test for dataset evaluation: To verify that the analy-
sis script is functional in results/analysis, run its help
command:

python queries.py -h

Expected Output: The script will print help and options
to the console.

2. Test for websites-code: Open a web browser and nav-
igate to http://localhost:8000 after php artisan
serve -port=8000.

Expected Output: The application’s homepage should
load successfully in the browser, confirming that the web
server is running and connected to the demo database.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): The major email providers namely Gmail, Outlook,
and Proton, all employ email subsystems that can be
identified using a combination of unique HTTP headers
and tracking vectors. Tables 7, 8, and 9 showing unique
HTTP headers and Tables 4, 5, and 6 showing the unique
tracking vectors triggered highlight this.

(C2): The tracking vectors and HTTP headers can be used
to launch evasive phishing sites that can avoid detection
from the email anti-phishing entities compared to the
baseline normal sites.

A.4.2 Experiments

(E1): There are no experiments that can be run. However, all
of our major claims can be validated with the provided
queries.py script. The instructions to setup are in the
README file in the folder and the environment can be
set up in a matter of some minutes. The script will output
the tables in the console and may output figure when
applicable.

(E2): Similar to above, this claim can be validated with the
provided queries.py script that will output the number
of email reports made for the smart site, which is signif-
icantly higher compared to the baseline sites. The pro-
vided websites-code can be used to evaluate the evasion
logic used compared to the baseline sites as well as the
phishing payload used. The accompanying README in
the folder provides additional steps that may be helpful
in evaluation of the code.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-



ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.
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